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Abstract—We present a domain-robust acoustic scene clas-
sification system for the APSIPA ASC 2025 challenge that
addresses city and temporal variations through Relaxed Instance
Frequency-wise Normalization (RFN) and multimodal fusion.
Our approach enhances a transformer-based architecture with
SE blocks by incorporating RFN to eliminate location-specific
and time-dependent domain discrepancies in audio spectrograms.
Additionally, we leverage multimodal information by fusing
acoustic features with city embeddings and temporal encodings.
The system employs a two-stage training strategy with pseudo-
labeling on unlabeled data to further improve generalization.

I. INTRODUCTION

Automating a machine to recognize the environmen-
tal/surrounding sounds termed as ‘acoustic scenes’ such as
a park, market, etc is called acoustic scene classification
(ASC) [1]. It is a key part of Computational Auditory Scene
Analysis (CASA), has been studied for over ten years and
useful in applications where ‘making sense of sound’ is desired
[2], like acoustic monitoring, mobile devices with context
awareness, smart wheel chairs, etc. Majority of the ASC sys-
tems, including the submissions in Detection and Classification
of Acoustic Scenes and Events (DCASE) challenge, focus
on supervised learning. In contrast, the Asia Pacific Signal
and Information Processing Association Annual Summit and
Conferene (APSIPA ASC) 2025 challenge takes a different
direction. It promotes a semi-supervised learning setup, which
better reflects real-world conditions where large amounts of
unlabeled data exist alongside only a few labeled samples.

Practical ASC systems face challenges due to different
sources of variation, including different recording conditions
[3]. These include differences in where the audio is recorded
(recording location) and the kind of device used to capture
it (recording device). Location-based variation can reflect
cultural and regional factors, such as spoken language [4], [5],
especially in scenes that involve speech component, like those
in the vehicle category. Device-based variation comes from
differences in hardware, as different devices have different
frequency responses [6]. Such factors lead to intra-scene varia-
tion i.e differences between recordings from the same acoustic
scene category. In DCASE datasets, recording location and
device are key sources of intra-scene variation. While DCASE
datasets mainly focus on variations from location and device
differences, time-related variation also plays an important role.
The Chinese Acoustic Scene (CAS) 2023 dataset highlights

this by including timestamp information, allowing analysis
of how acoustic scenes change over time. For example, the
soundscape of a public square may differ between weekday
mornings and weekend evenings. These temporal shifts can
affect the background noise, activity level, and presence of
specific sound events. ASC systems that ignore these contex-
tual factors struggle to generalize across such variations.

In this work, we propose an enhanced acoustic scene
classification framework that addresses domain shift across
multiple cities and temporal conditions. Our approach builds
upon a transformer-based architecture featuring Squeeze-and-
Excitation (SE) blocks for channel-wise attention and trans-
former encoders for temporal modeling. While this baseline
demonstrates strong performance, it remains vulnerable to
location-specific and time-dependent variations that degrade
accuracy when deployed in unseen cities or different temporal
contexts. To address this limitation, we integrate Relaxed
Instance Frequency-wise Normalization (RFN) [7], a tech-
nique that eliminates instance-specific domain discrepancies
by normalizing along the frequency axis where environment-
relevant information predominantly resides in audio spec-
trograms. Unlike conventional channel-based normalization
methods, RFN specifically targets the frequency statistics that
encode city-specific acoustic characteristics and temporal vari-
ations in soundscapes. By incorporating RFN as a plug-and-
play module after the initial batch normalization layer, our
framework achieves robust generalization across diverse urban
environments and time periods while preserving discriminative
information essential for accurate scene classification. This in-
tegration enables consistent performance across multiple cities
and temporal conditions without requiring location-specific or
time-aware training procedures, making it particularly suitable
for the APSIPA ASC 2025 challenge’s emphasis on cross-city
and temporal generalization.

II. PROPOSED METHOD
A. Architecture Overview

The system builds upon a transformer-based architecture
featuring: (1) Squeeze-and-Excitation (SE) blocks for channel-
wise attention, (2) transformer encoders for temporal sequence
modeling, and (3) multimodal fusion for incorporating city and
temporal metadata. The input audio is first converted to log-
mel spectrograms with 64 mel bands, extracted using a 2048-



point FFT with 50% overlap. The spectrograms are processed
through two SE blocks with 64 and 128 channels respectively,
each followed by 2x2 average pooling. The features then pass
through a transformer encoder with 8§ attention heads before
global pooling and classification.

B. Relaxed Frequency Normalization (RFN)

RFN operates on the principle that domain-relevant infor-
mation in audio features is dominated by frequency statis-
tics rather than channel statistics. The normalization is for-
mulated as: RFN(z) = X - LayerNorm(z) + (1 — ) -
FreqInstanceNorm(z), where FreqInstanceNorm normalizes
along the frequency axis over batch and time dimensions, while
LayerNorm provides global normalization. The relaxation pa-
rameter A (set to 0.5) balances between removing domain-
specific artifacts and preserving discriminative information.
This mechanism effectively eliminates city-specific frequency
patterns while maintaining scene-relevant acoustic features.

C. Multimodal Fusion

To leverage available metadata, we incorporate city and
temporal information through learned embeddings:

City Encoding : Each of the 22 cities is mapped to a 16-
dimensional embedding vector through a learnable embedding
layer, capturing city-specific acoustic priors.

Temporal Encoding : Time metadata is encoded using
sinusoidal positional encodings for hour, month, weekday,
and minute components, creating an 8-dimensional feature
vector that captures cyclical temporal patterns. These features
are mapped to a 16-dimensional space through a learned
linear transformation. The multimodal fusion occurs after the
transformer encoder, where acoustic features (128-dim) are
concatenated with city embeddings (16-dim) and temporal
embeddings (16-dim), then projected back to 128 dimensions
through a fusion layer before final classification.

D. Training Strategy

A two-stage training approach is used with pseudo-labeling:

Stage 1 : The model is trained on labeled data (80% train,
20% validation split) using cross-entropy loss, Adam optimizer
with learning rate le-4, and step-wise learning rate decay. We
initialize from a pre-trained SE-Trans model and fine-tune all
layers.

Stage 2 : The trained model generates pseudo-labels for
unlabeled samples in the training set. The model is then
retrained on the combined labeled and pseudo-labeled data,
improving its ability to generalize across domains.

III. EXPERIMENTAL SETUP

A. Dataset Description

For the APSIPA ASC 2025 Grand Challenge, the devel-
opment dataset is a subset of the Chinese Acoustic Scene
(CAS) 2023 dataset and contains 24 hours of audio recordings.
The data was collected from 22 different cities across China
and consists of 10-second audio clips labeled with one of 10
acoustic scene categories namely : ‘Bus’, ‘Airport’, ‘Metro’,

‘Restaurant’, ‘Shopping Mall’, ‘Public Square’, ‘Urban Park’,
‘Traffic Street’, ‘Construction Site’, and ‘Bar’.

B. Implementation Details

1) Feature Extraction : 64-dimensional log-mel spectro-
grams with 500 frames

2) Model Configuration : 8§ attention heads, 32 feed-
forward dimensions, 1 transformer layer, dropout rate
0.1

3) Training : Batch size 4, 20 epochs maximum with early
stopping (patience=10)
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